Critical cellulase and hemicellulase activities for hydrolysis of ionic liquid pretreated biomass.
نویسندگان
چکیده
Critical cellulase and hemicellulase activities are identified for hydrolysis of ionic liquid (IL) pretreated poplar and switchgrass; hemicellulase rich substrates with largely amorphous cellulose. Enzymes from Aspergillus nidulans were expressed and purified: an endoglucanase (EG) a cellobiohydrolase (CBH), an endoxylanase (EX) and an acetylxylan esterase (AXE). β-Xylosidase (βX) from Selenomonas ruminantium and a commercial β-glucosidase (βG) from Novozyme 188 were admixed with the A. nidulans enzymes. Statistical analysis indicates that βG and βX activities are significant for both glucose and xylose yields for the two substrates. EG is a significant factor for glucan hydrolysis while EX is significant for xylan hydrolysis of the substrates. The CBH, which has activity on crystalline cellulose and negligible activity on amorphous cellulose, was not a significant factor in glucan hydrolysis. EX is significant in glucan hydrolysis for poplar. The addition of AXE significantly improves xylan hydrolysis for poplar but not switchgrass.
منابع مشابه
Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Wood Biomass
Pretreatment of lignocellulosic biomass materials from poplar, acacia, oak, and fir with different ionic liquids (ILs) containing 1-alkyl-3-methyl-imidazolium cations and various anions has been carried out. The dissolved cellulose from biomass was precipitated by adding anti-solvents into the solution and vigorous stirring. Commercial cellulases Celluclast 1.5L and Accelerase 1000 have been us...
متن کاملLignocellulosic Fermentation of Wild Grass Employing Recombinant Hydrolytic Enzymes and Fermentative Microbes with Effective Bioethanol Recovery
Simultaneous saccharification and fermentation (SSF) studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch ...
متن کاملSupplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover
BACKGROUND Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal...
متن کاملInfluence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover.
Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contras...
متن کاملComprehensive characterization of non-cellulosic recalcitrant cell wall carbohydrates in unhydrolyzed solids from AFEX-pretreated corn stover
BACKGROUND Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzyme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 104 شماره
صفحات -
تاریخ انتشار 2012